A Recurrent Neural Network to Traveling Salesman Problem
نویسندگان
چکیده
One technique that uses Wang’s Recurrent Neural Networks with the “Winner Takes All” principle is presented to solve two classical problems of combinatorial optimization: Assignment Problem (AP) and Traveling Salesman Problem (TSP). With a set of appropriate choices for the parameters in Wang’s Recurrent Neural Network, this technique appears to be efficient in solving the mentioned problems in real time. In cases of solutions that are very close to each other or multiple optimal solutions to Assignment Problem, the Wang’s Neural Network does not converge. The proposed technique solves these types of problems by applying the “Winner Takes All” principle to Wang’s Recurrent Neural Network, and could be applied to solve the Traveling Salesman Problem as well. This application to the Traveling Salesman Problem can easily be implemented, since the formulation of this problem is the same that of the Assignment Problem, with the additional constraint of Hamiltonian circuit. Comparisons between some traditional ways to adjust parameters of Recurrent Neural Networks are made, and some proposals concerning to parameters with dispersion measures of the cost matrix coefficients to the Assignment Problem are shown. Wang’s Neural Network with principle Winner Takes All performs only 1% of the average number of iterations of Wang’s Neural Network without this principle. In this work 100 matrices with dimension varying of 3×3 to 20×20 are tested to choose the better combination of parameters to Wang’s recurrent neural network. When the Wang’s Neural Network presents feasible solutions for the Assignment Problem, the "Winner Takes All" principle is applied to the values of the Neural Network’s decision variables, with the additional constraint that the new solution must form a feasible route for the Traveling Salesman Problem. The results from this new technique are compared to other heuristics, with data from the TSPLIB (Traveling Salesman Problem Library). The 2-opt local search technique is applied to the final solutions of the proposed technique and shows a considerable improvement of the results. The results of problem “dantzig42” of TSPLIB and an example with some iterations of technique proposed in this work are shown. This work is divided in 11 sections, including this introduction. In section 2, the Assignment Problem is defined. In section 3, the Wang’s recurrent neural network is presented and a O pe n A cc es s D at ab as e w w w .ite ch on lin e. co m
منابع مشابه
Training Simultaneous Recurrent Neural Network with Resilient Propagation for Static Optimization
This paper proposes a non-recurrent training algorithm, resilient propagation, for the Simultaneous Recurrent Neural network operating in relaxation-mode for computing high quality solutions of static optimization problems. Implementation details related to adaptation of the recurrent neural network weights through the non-recurrent training algorithm, resilient backpropagation, are formulated ...
متن کاملA new heuristic procedure to solve the Traveling Salesman problem
This paper presents a heuristic technique that uses the Wang Recurrent Neural Network with the "Winner Takes All" principle to solve the Traveling Salesman Problem. When the Wang Neural Network presents solutions for the Assignment Problem with all constraints satisfied, the "Winner Takes All" principle is applied to the values in the Neural Network’s decision variables, with the additional con...
متن کاملRecurrent Neural Network with Soft 'Winner Takes All' Principle for the TSP
This paper shows the application of Wang’s Recurrent Neural Network with the 'Winner Takes All' (WTA) principle in a soft version to solve the Traveling Salesman Problem. In soft WTA principle the winner neuron is updated at each iteration with part of the value of each competing neuron and some comparisons with the hard WTA are made in this work with instances of the TSPLIB (Traveling Salesman...
متن کاملAn asynchronous recurrent linear threshold network approach to solving the traveling salesman problem
In this paper, an approach to solving the classical Traveling Salesman Problem (TSP) using a recurrent network of linear threshold (LT) neurons is proposed. It maps the classical TSP onto a single-layered recurrent neural network by embedding the constraints of the problem directly into the dynamics of the network. The proposed method differs from the classical Hopfield network in the update of...
متن کاملMarkov Chain Anticipation for the Online Traveling Salesman Problem by Simulated Annealing Algorithm
The arc costs are assumed to be online parameters of the network and decisions should be made while the costs of arcs are not known. The policies determine the permitted nodes and arcs to traverse and they are generally defined according to the departure nodes of the current policy nodes. In on-line created tours arc costs are not available for decision makers. The on-line traversed nodes are f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012